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Abstract

Terrestrial manipulators with more dof than the dimension of the workspace
and space manipulators with as many manipulator dof as the dimension of
the workspace are both redundant systems. An interesting problem of such
redundant systems has been the repeatability problem due to the presence of
nonholonomic constraints. We show in this paper, contrary to the existing
belief, that integrability of the nonholonomic constraints is not a necessary
condition for the repeatability of the configuration variables. There exist
certain trajectories in the independent configuration variable space that are
like "holonomic loops" along which the redundant manipulators exhibit
repeatable motion. In this paper we present a simple method based on
optimization techniques for designing repeatable trajectories for free-flying
space manipulators and terrestrial redundant manipulators under
pseudoinverse control.

*A part of this paper was accepted for publication in the 1994 IEEE International Conference
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1. Introduction

An important problem of kinematically redundant robot manipulators has been tile
repeatability problem under pseudoinverse control. This problem was initially observed ad i
analyzed by Klein and Huang 171 where resolved motion rate control 1221 using the Jacobian
pseudoinverse was noticed to result in nonrepeatable joint motion. As an alternative to the
pseudoinverse control, Baillieul 12) proposed the extended Jacobian technique that lifted

closed end-effector paths to closed joint paths. Later, Seraji [151 proposed the configuration
control technique that also resulted in repeatable joint motion. The key idea behind tile

extended Jacobian tedhnique was to add enough independent additional constraints to the
motion of the manipulator so that the rectangular Jacobian of the redundant manipulator
could be converted into a square Jacobian of full rank. When the additional constraiuls
that are imposed upon the motion of the redundant manipulator are holonomic ill nature,
the full rank square Jacobian guarantees repeatability in the joint nIotion.

Though the pseudoinverse control does not produce repeatable joint motion ill gelerai,
it is fundamentally similar to the extended Jacobian technique in the sense that it is also a
form of constrained motion. For a redundant manipulator with it degrees of freedom amid
a workspace of dimension m, the dimension of the null space of the manipulator Jacobian
is equal to (n - ti). The extended Jacobian technique 121 imposes (s4 - us) additiomal
independent constrainuts oh the umotion o" the systeim to inake the Jacobian squu antd 1' hail
rank. The pseudoinverse control is equivalent to tile imposition of (ns - In) constraints that
direct the motion of the joints orthogonal to the (n - in) dimensional null space. While the
constraints due to pseudoinverse control are nonholonomic or nonintegrable, the constraints
imposed by the extended Jacobian technique are holonomic or integrable. Therein lies tile
essential difference between the two approaches, more of which will be discussed in section

2.

The pseudoiniverse control problem has been studied by a number of researchers 171,

[81, 191, and 1161. Klein and lluang 17] analyzed the nonrepeatability problemn of a three
link planar redundant manipulator in terms of the integrability condition of a Pfailian
differential form. Shamir and Yomndin 1161 asserted that for a redundant manipulator
repeatability is guaranteed if and only if there exists an integral surface of the distribution

spanned by the column vectors of the Jacobian pseudoinverse. Under the difl'rential
geometric framework adopted, it was concluded that the repeatability of a redundaimm.
manipulator can be assured if and only If a certain "Lie Bracket Condition" (LIBC) is
satisfied. In section 3 of this paper we will show that this LBC is not a necessary condition
for the repeatability of redundant manipulators. We will also show in section 2 that
the LBC is not a sufficient condition for repeatability when applied to arbitrary extended
Jacobians. This contradicts some of the discussion by Luo and Ahmad 191 who discussed the
measure of repeatability for planar redundant manipulators under pseudoinverse colmtrol.
They used a framework based on the theory of integration on manifolds. The authors in

[71, [9), and [16] have all concluded in essence that integrability is a necessary conlition



for the repeatability in redundant manipulators. Similar opinion was also expressed in 131.
We do not quite agree with this statement. Our contention is that integrability is only a
sufficient condition for repeatability, it is by no means a necessary condition. In section 3
will derive a weaker necessary condition for the repeatability in redundant manipulators.

In 1989 Klein and Kee [81 presented a numerical procedure to find stable drift-free
trajectories in redundant manipulators under pseudoinverse control. Later, Klein [61 tried
to predict the stable drift-free trajectories of [81 by using the Lie Bracket Condition (L13C)
in 116]. The results indicated that the stable trajectories in [8] are not contained in the L13C
surfaces of 116]. This bears testimony to the fact that the LBC of [161 is not a necessary
condition for repeatability.

Recently Roberts and Maciejewski [141 presented a necessary and sufficient condition
for the existence of stable surfaces for repeatable motion in redundant manipulators. They
showed that the Lie Bracket Condition (LBC) of [16] is a necessary condition for the
existence of an integral surface, but it is not a sufficient condition for the surface to be
stable for repeatability. Since stable surfaces are quite rare, the authors 114] designed a
repeatable control that is nearest, in an integral norm sense, to a desired optimal control.
In this paper we are concerned with repeatable trajectories but not with their stability.
Though the LBC is a necessary condition for a stable surface, we show that it is not a
necessary condition for repeatability. Using a necessary condition, weaker than the LBC,
we will show the existence of "holonomic loops" that lift closed paths in the workspace to
closed paths in the joint space under pseudoinverse control.

With no intention of digressing, we would like to mention that space robots with as
many manipulator degrees of freedom as the dimension of the workspace exhibit a special
kind of redundancy called "nonholonomic redundancy". It was shown that nonholonornic
redundancy, unlike ordinary redundancy, manifests itself only after a global motion and
is not characterized by "self-motion" manifolds [121. Inspite of fundamental differences
between nonholonoinic redundancy and ordinary kinematic redun(ancy, more of whic-h
will be discussed in section 2, the control problem in both is characterized by the non-
integrability of the distribution spanned by the vector fields of the system. Hence the
repeatability problem in space manipulators with no additional degrees of freedom and
terrestrial redundant manipulators are inherently similar.

Since space manipulators are also redundant systems, the repeatability problem in
space manipulators fall within the scope of this research. While the problem of reorienting a
space multibody system using internal motion has been studied by a number of researchers
110]1, [11], [131, [18], 1211, [231, etc., an important problem that has not been addressed so
far is the repeatability problem in space manipulators. The motion of the end-effector of a
space manipulator is related to the joint motions through the "generalized Jacobian" 119]
by eliminating the dependence of the end-effector motion on the chaunge of orientation of the
space vehicle. While the joints of the space robot move along closed paths, the orientation
of the space vehicle does not. Consequently the end-eife-tor of UIh space JMnuilnlalor does
not move along a closed path. And conversely, the joints of the space robot fail to move
along a closed path when the end-effector traces a closed path. While a more complete
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discussion on this topic will follow in section 2.3, we only like to reiterate here that the
manifestation of redundancy in terms of nonrepeatability in the configuration variables is
observed in nonholonoinically redundant space robots and ordinarily redundant terrestrial
robots alike.

The rest of the paper is organized as follows. In section 2 we take a look at the control
of redundant manipulators, including space manipulators, from a different perspective. In
section 3 we derive a necessary condition for repeatability in nonholonomic systems like
space manipulators and redundant manipulators under pseudoinverse control. We use this
necessary condition to find repeatable trajectories for nonholonomically redundant space
manipulators in section 4 and ordinarily redundant terrestrial manipulators in section 5.

In section 6 we present some results obtained through computer simulation.

2. A Different Perspective on Redundant Manipulator Control

2.1 Pseudoinverse Control as a form of Constrained Motion

Kinematically redundant manipulators have more degrees of freedom than the diinen-
sion of the workspace. Sor such systems, the direct kinematic relationship can be wji-ttn
in the form

X = f(O) (1)

where Xv E R'" represents the workspace variables, 0 E R," represents the manipulator's
joint variables, and it > in by the definition of redundancy. Differentiating Eq.(1), we get

:t= J6, JAO E nxs(2)

where J is the manipulator Jacobian matrix. The pseudoinverse Solution invokes the
control law

6 = J#. (3)

where J# E R"lx" is the pseudoinverse of J. We will always assume in our discussion
that the manipulator is not at any singular configuration. Therefore the Jacobian will
always have full rank and the null space of the Jacobian will have a dimension of (it - in).

The pseudoinverse solution has the mininium norim property which implieS that the joi:1t

motion 6 obtained from Eq.(3) will have to be orthogonal to the null space of J. The
orthogonality requirement is a constraint on the joint velocities 0. Since the null space
of J has a dimension of (n - m), the pseudoinverse solution in Eq.(3) will impose (it - mn)

velocity constraints. 'lb illustrate this concept we consider the simple three link plainr
redundant manipulator shown in Fig.I. The lengths of all the links of the manipulator are
assumed to be unity for simplicity. The workspace is defined by the Cartesian coordimal.es
X and Y and the manipulator configuration is described by the absolute angles 0o, 02, and
03. The direct kinematic relationship, as in Eq.(1), is of the form

3



X = co06 1 + cosM0 + cos0 3

Y = sine, + sin 02 + sin0 3  
(4)

Therefore the Jacobian matrix, as in Eq.(2), is given by

jo=(-sinOi, -Sin02 -sinl03 (5)

The Jacobian has a 1-dimensional null space whose basis vector can be conviniently ob-
tained as a cross product of the row vectors of Je. The velocity constraint due to the
pseudoinverse control can then be expressed as

sin (03 - 02) d0 1 + sin (01 - 03) dO2 + sin (02 - 01) d93 = 0 (6)

A necessary and sufficient condition for the integrability of a differential expression of
the form

vi da + v2 dfl + vj d-y = 0 (7)

is that [51

VI V V2 --0 -+~ V3 --- 1 !!2 0 (8)
0Y oftj 0a -Y ) a#3 0

Using the necessary and sufficient condition above, it is quite straightforward to show
that the constraint due to pseudoinverse control, given by Fq.(6), is not integrable or
nonholonomic in the general case. Therefore the three link manipulator shown in Fig.1
has three expressions of motion under pseudoinverse control: the two kinematic relations
given by Eq.(4), and one nonintegrable constraint given by Eq.(6).

In the general case of a redundant manipulator with is joints in an ni-dinIienlsionial

workspace, there are (n - m) nonholonotnic constraints (the nluinber of noniholooiniic con-

straints is equal to the degree of redundancy in the system) imposed by pseudoinverse
control and ni kinematic relations for a total of n expressions of inotion. Of course, the
nonholonomic nature of the pseudoinverse constraints need to be ascertained huomi the
more general test for integrability in n dimensions, provided in Appendix-A.

When the manipulator has as many degrees of freedom as the dimninsion of the
workspace, ie. m = - , the Jacobian is square and has no null spalce assiling of course
that the system is not at any singular configuration. Then the pseudoinverse control does
not impose any nonholonomic constraints; the motion of the system is entirely governed
by the n direct kinematic relations that are holonomic.

2.2 Repeatability using the Extended Jacobian

Consider a simple nonholonomic system whose constraint equation is of the form

dz = adz + bdY (9)
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where x, y, and x are the system variables, and a and b are functions of x and V. The

variables x and y can be considered to be the independent variables of the system an(l z
may be considered to be the dependent variable. If x and y move along a closed path, the
change in the dependent variable x is expressed as

Jdzf ad + bd- JJ= Ab -~ dXd

In the above equation the line integral was conviniently expressed as a surface integral
using the generalized Stokes' Theorem [1] on the 2-dimensional oriented manifold D. OD
is the path of line integration and is the boundary of the domain D. Since the constraint
in Eq.(9) is a nonholonomnic constraint, we can show

Ob . a
TX 4~

by using the test for integrability in Eqs.(7) and (8). Then it simply follows that the
dependent variable z does not move along a closed path as the independent variables
and y move along closed paths. Clearly, all the variables of the nonholonornic system
in Eq.(9) (1o not move along closed paths simultaneously. This is true for nonholohomic
systems in general including redundant manipulators under pseudoinverse control. The
pseudoinverse control of redundant manipulators result in nonrepeatable motion of the
joint variables. Conversely, holonomic systems are characterized by repeatability in the
configuration variables that can be proven directly from the test for integrability.

The problem of nonrepeatability of nonholonomically constrained redundant manipu-
lators under pseudoinverse control can be remedied by using the extended Jacobian method
[2]. For a it joint redundant manipulator with an m-dimensional workspace, the extended
Jacobian method imposes (it - m) independent holonomic constraints of the form

g (0) = o, 9 f("-'") (ERJ)

These holonomic constraints are similar to the direct kinematic relations in Eq.(]) and
can be used to augment the manipulator Jacobian in EA1.(2) for constructing the extended
Jacobian as follows

The above equation indicates that we have artificially increased the dimension of the
workspace from rn to n and in effect we now have a nonredundant manipulator with a
square Jacobian. FRom our discussion in section 2.1, we know that the pseudoinverse
control of such a manipulator does not impose any nonholonomic constraints. The mo-
tion of the system is then governed completely by the m direct kinematic relations in
Eq.(I) and the (it - it) additional constraints of Eq.(10). flolonomic systems are char-
acterized by repeatability and the extended Jacobian technique achieves repeatability by
converting the "redundant-manipulator-pseudoinverse-control" nonholonomic system into
a holonomic system.
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An alternative way to look at the extended Jacobian technique is to reconsider the
constraints in Eq.(11). If we group the joint variables 0 E Rn into two sets consisting of
01 ec R- and 02 E /e-, we can write from Eq.(ll)

j; JI61+ J 6, J J (12)

0 = JG1 1 + JG202, JG1 (Og J92 'O (13)
00\ -002/

Since the (n - m) constraints in Eq.(10) are all independent, it will be possible to find the
set 02 E R"-"' such that the matrix JG2 is always invertible. Then Eqs.(13) and (12) caii

be written as

02 = -J 0 2-' J 61 (14)

a= JO,. J = (JI -J 2JG2-'J.,) E ' (15)

The above equations are modified differential forms of EAIs.(1) and (10) and are therefore

holonomic in nature. Since the Jacobian J is square, the system in Eq.(15) virtually

represents a nonredundant manipulator with x as the workspace and 01 as the joint space.

Therefore the pseudoinverse control of Eq.(15)

61 = t (16)

imposes no nonholonoinic constraints. This follows from our discussion in section 2.1. This

along with the fact that Eq.(15) is a holonomic equation implies that the constraints of

motion of the system in Eq.(16) are holonomic. Therefore closed paths in the workspace

x will result in closed paths in tile joint space 01, provided the manipulator does not pass

through any singular configuration. This follows from our discussion earlier in this section.

Additionally, since Eq.(14) is holonomic, closed paths in the space of the independent

variables 01 will result in closed paths in the space of 02 - the dependent variable. In effect

the extended Jacobian method will lift closed paths in the workspace x to closed paths in

the joint space comprising of both 01 and 02.

2.3 Redundancy in Space Manipulator Systems

Space robots exhibit nonholonomic redundancy 112] - a special type of redundancy

that exists in the absence of ordinary kinematic redundancy. Unlike ordinary kinematic

redundancy, nonholonomic redundancy manifests itself only after a global motion and

cannot be characterized by self-motion manifolds. Inspite of fundamental differences, both

redundancies are responsible for nonrepeatable motion of the configuration variables under

pseudoinverse control. The nonrepeatability in the configuration variables are a direct

manifestation of nonholonomic constraints of motion. In the case of ordinarily redundant

terrestrial robots the nonholonomic constraints are imposed by the pseudoinverse control
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itself, whereas in the case of space robots the nonholonomic constraints are naturally
imposed by the conservation of angular momentum.

Consider a space manipulator system with manipulator joint variables 01 E R" in a
workspace x e IM. The manipulator is chosen to have as many degrees of freedom as the
dimension of the workspace to exhibit the manifestation of nonholonomic redundancy in
the absence of ordinary kinematic redundancy. The orientation of tile space vehicle on
which the space manipulator is mounted is denoted by 0 o E R". Figure 2 depicts a planar
space manipulator for which m = 2 and k = 1. It can be shown 111], 1121 that the direct
kinematic relation of the space manipulator is of the form

a: f .(01,00) (17)

which has the structure

.t = J, 0, + Jo0O (18)

in differential form. The nonholonomic constraint due to angular momentum conservation
can be expressed as [111

6o = H(0 1) (1'J)

A complete description of the matrix H E Rkm- can be found in [11]. Equation (19) caan
be substituted in Eq.(18) to obtain

J± = J01, (J, + J H) (2)

where J E R"'- 1" is the "generalized Jacobian" 1191.
The generalized coordinates of the system include 01 E R" and 0u E R .k. The WWtaI

number of generalized coordinates is (m + k) and the dimension of the workspace is ,.

The redundancy in the space manilulator system is due to the higher dimension of the
generalized coordinates than that of the workspace. The difference in the number of
generalized coordinates and the workspace variables is equal to the degree of redundancy
in the system. This is similar to ordinary kinematic redundancy in terrestrial manipulators.

A fundamental difference in the redundancy between space manipulators and terres-

trial manipulators is that the dimension of the input space is equal to that of the gener-
alized coordinates in the case of terrestrial manipulators whereas for space manipulators,
the dimension of the input space is smaller than the dimension of the generalized coor-
dinates. The inputs for terrestrial manipulators are tile derivatives of all the generalized
coordinates, for space manipulators they comprise of the derivatives of the independent
generalized coordinates only, the orientation variables of the space vehicle being the de-
pendent generalized coordinates.

A closer look at Eqs.(19) and (20) point out their similarity to Eqs.(14) and (15).
Though the equations look similar, they are fundamentally different because Eqs.(14) and
(15) are holonomic while Eqs.(19) and (20) are nonholonomic in nature. Due to this
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difference, the extended Jacobian method of redundancy control results in repeatable joint
motion in ordinarily redundant terre,• trial manipulators whereas the pseudoinverse control
of the generalized Jacobian 119] results in nonrepeatable joint motion in space manipulators.
A more complete discussion on this topic is presented next.

Consider the trajectory control in the three different cases of: (a) a nonholonomically
redundant space manipulator, (b) an ordinarily redundant terrestrial manipulator, and (c)
an ordinarily redundant terrestrial manipulator using the extended Jacobian. For case (a)
the forward kinematics is expressed by Eqs.(17) and (19). Since Eq.(19) is nonholonornic,
a closed path in 01 space (toes not imply a closed path in the Oo space. This implies from
Eq.(17) that a closed path in the joint space of the space manipulator does not result in
a closed path in the workspace. For cases (b) and (c) the forward kinematics is simply
expressed by Eq.(1) - a position constraint. Therefore a closed path in the joint space
will necessarily result in closed trajectories of the end-effector variables. For end-effector
trajectory control in case (a), we use the pseudoinverse control law from 1.(20)

61 = j# x (21)

to plan the joint trajectories. Equation (20) is a nonholonomic equation because it was
obtained by substituting a nonholonomic equation, namely Eq.(19) ilto a holonomic equa-
tion, namely Eq.(18). Therefore, while using Eq.(21), closed trajectories in the workspace
will generally not result in closed trajectories in the joint space. This can be easily proven
by contradiction. Suppose that closed trajectories in xv pr(1iuce closed trajectories in 01.
We know from the nature of Eq.(19) that closed trajectories in 01 (to not usually plroduce
closed trajectories in 0o. This will contradict Eq.(17) that requires the trajectories of 0 o
to be closed for closed trajectories of x and 01. For case (b) closed trajectories in the
workspace do not result in closed trajectories in the joint space whereas for case (c) they
do. This follows straight from our discussion in section 2.2. We conclude this section by
summarizing the last result in a tabular form.

Closed Path in Joint Space Closed Path in Workspace
implies implies

Closed Path in Workpspace Closed Path in Joint Space

Space Manipulator False False

Redundant Manipulator True False
(Pseudoinverse Control)

Redundant Manipulator Tr-ue True
(Extended Jacobian)

2.4 The LBC is not a Sufficient Condition for Repeatability

Shamir and Yomdin [161 studied the repeatability problem in redundant manipulators
and derived a necessary and sufficient condition, the Lie Bracket Condition (LBC), for

8



repeatability. In this section we will show that the LBC of 1161 is not a sufficient condition
for repeatability when applied to arbitrary extended Jacobians 12]. This contradicts some
of the discussion made in [91.

In simple words, the LBC [161 states that repeatability in manipulators is assured if
and only if the Lie Bracket of any two column vectors ki and kj of the matrix K, K being
the pseudoinverse of the manipulator Jacobian, is a linear combination of the columns of
K.

For a manipulator with as many degrees of freedom as the dimension of the workspace,
tile control matrix K is simply the inverse of the manipulator Jacobian, assuming of course,
that the manipulator is not at any singular configuration. The LBC is satisfied for the
square and full rank matrix K, and indeed, we have repeatable joint motion when the
end-effector moves along closed paths.

Since the LBC is always satisfied for square matrices with full rank, Luo and Alinhad
191 extrapolated that repeatability can be achieved by simply converting the rectangular
Jacobian of a redundant manipulator into a square matrix by imposing additional inde-
pendent constraints. They supported their argument with the example of the extended
Jacobian [2]. This method achieves repeatability by imposing additional independent con-
straints that are holonomic. The assertion of Luo anC Ahmad [91 is not correct because
the rectangular Jacobian may be extended into a square matrix of full rank by imposing
nonholonomic constraints as well, and nonholonomic systems do not exhibit repeatability.
To understand better, we look back at the expressions of motion of a redundant ifanip-

ulator under extenled Jacobian control 12J and a space manipulator, in sectionis 2.2 ald
2.3 respectively. Specifically, we compare Eqs.(12) and (14) in section 2.2 with Eqs.(18)
and (19) in section 2.3. We have seen in section 2.3 that these two systems have struc-
turally identical kinematical equations and constraints but the nature of their constraints
are different. Since the space manipulator has nonholonomic constraints, closed paths in
the workspace do not result in closed paths in the joint space. This tells us that if the con-
straint in Eq.(14) were nonholonomic, the pseudoinverse control of the extended Jacobian
of the redundant manipulator in section 2.2 would exhibit nonrepeatable joint motion as
well.

To illustrate nonrepeatability in redundant manipulators with an extended Jacobian,
we consider the manipulator in Fig.1. We assume all the link lengths to be equal to 0.5 units
for the sake of simplicity. For this manipulator which has a single degree of redundancy,
we impose one nonholonomic constraint

03 = sin(O0 + 03) 01 + cos(0 2 + 03) 02

The extended Jacobian relation of the manipulator takes the following form

1(-sin 01 - sin 02 -Sin 03 6(l ~)= ~ cm C-OS02 CoOS 3) 02 (22)
2sin(0+ 03) COS(02 + 03) -1 03

Except at the singular points, the pseudoinverse of the extended Jacobian in Eq.(22)

9



will be equivalent to the inverse, for which the LBC will always be satisfied. However,
closed paths in the workspace x will not always result in closed paths in the joint space 0,
as seen from Fig.3. Therefore, the assertion made in [91 is not correct.

We wish to make two comments in regard to Fig.3. The abcissae and ordinate in Fig.3
are in different scales. Therefore the circular path of the end-effector looks elliptical. Hbr
the same reason, the link lengths seem to vary in different configurations. Also, it may be
noted that the manipulator exhibits a limit cycle behavior - the drift in the joint angles
of the manipulator decreases as the end-effector repeatedly moves along the closed path.
This limit cycle behavior of redundant manipulators will be explained later in section 5.

3. A Necessary Condition for Repeatability

Shamir and Yomdin [16] studied the repeatability problem in redundant manipulators
and arrived at a Lie Bracket Condition (LBC) as a necessary and sufficient condition for re-
peatability. The LBC is by itself a necessary and sufficient condition for the integrability of
the distribution associated with the Jacobian pseudoinverse. This comes directly from the
statement of F'-obenius's Theorem [17]. This was proven separately for the 3-dimensional
case in [9), [14). In essence, Shamir and Yomdin 116) asserted that repeatability can be
achieved if and only if the solution to the pseudoinverse control problem is integrable. We
do not quite agree with this condition since there exists a weaker necessary condition for
repeatability.

Terrestrial redundant manipulators under pseudoinverse control and nonholonomically
redundant space manipulators are both constrained systems, and the repeatabihiLy probleiI
in these redundant systems is a seardc for closed trajectories of their configuration variables.
We take into consideration the constraints of the systems by searching for closed trajectories
of the independent configuration variables that result in closed trajectories of the dependent
configuration variables. The change in the dependent configuration variables is expressed
as a line integral along the closed path in the space of tile independent configuration
variables. This line integral may be conviniently expressed as a surface integral using the
generalized Stokes' Theorem on a manifold. If D is an oriented manifold of dimension k,
and if w is a (k - 1)-form on D, then from Stokes' Theorem [1] we have

fLDW = fD 
(23)

where, OD is the path of the line integration and is the boundary of the doimiain D, and
dw is a differential k-form obtained by exterior differentation of w. In the case of a planar
terrestrial manipulator with three links and a single degree of redundancy, the domain D is
a 2-dimensional manifold, and the differential i-form on D has the functional dependence

, = d-o0 = gl( 1 .02) do, + g 2 (1, .j) d4o, (241

where, 4 is the dependent joint variable, and .0 and , are the independent joiut vari-
ables of the manipulator. If Eq.(24) were to depict the constraint in a noinholonomically
redundant planar space robot with two links, Oo would represent the orientation of the
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space vehicle in the plane, and Ol and 02 would represent the joint variables of the two
link manipulator.

Using Stokes' theorem, the line integration of d¢0 along a path OD on the 2-dimensional
manifold D of Ol and 02 is expressed as

jdoo J[ý - 91] d4 A d0S2

:JD 10 1~ D2

where "A" denotes the exterior product, and a, the orientation of D has the same orien-
tation as dl A dA2 when the direction along the path is counterclockwise, otherwise a has
the same orientation as d, A do,.

If the constraint given by Eq.(24) were a holonomic constraint, then we would have

ý02 = Og, (25)

Then the change in tile variable 0o would be zero for all closed paths in tile domain
D because of the integrable nature of the constraints. This would ensure repeatability.
Our contention is that integrability is a sufficient condition for repeatability but is not
a necessary condition. For the nonholonomically redundant space manipulator or the
terrestrial redundant manipulator the condition given by Eq.(25) (toes not hold good, yet
repeatability can be achieved for certain closed paths in the domain D. We define

0992 D9g1 A
--- =(4 1,. 2 )(26)

The change in the dependent joint variable •0 of the redundant manipulator for a positive
direction of travel in the space of the independent joint variables is equivalent to

L d4 ) F(01 3,,) dold

= F(*;4 e) fD dro1do4 = F(,*, 0;) A(D)

where, the above equation was obtained by the application of the mean value theorem
of integral calculus. Tile function F is assumed to be continuous in the entire doinaiii
D and hence the mean value theorem applies. 0; and 0; denote some point within tile
domain D, and A(D) is the measure of the domain D; in this case it is simply equal to the
area enclosed within the closed curve OD. F(04;, #2) can also be interpreted as the mean
value of the function F, defined in Eq.(26), taken over the domain D. If this mean value
happens to be zero, then we would have a zero net change in the dependent joint variable
of the redundant manipulator. This would ensure repeatability in the joint motion of the
terrestrial manipulator. For the space manipulator this would ensure repeatability ill the
motion of the end-effector in the workspace. We are now ready to state the necessary
condition for the repeatable motion of the redundant manipulator.
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Proposition: A necessary condition for the repeatable motion of the redundant manipu-
lator is that the closed path OD which is tile boundary of the domain D in the independent
configuration space should enclose at least one point where the function F defined by
Eq.(26) is equal to zero.

The proof of the proposition stated above is quite straightforward and is left o the reader.

If the necessary condition for repeatability is satisfied, it may be possible to find
paths in the space of the independent configuration variables such that the net change
of the dependent configuration variables is zero over the dosed path. The closed path in
the independent configuration space will then be like a "holonomic loop" over which the
nonholonomic system will exhibit holonomic behavior globally. Incidentally, the holonomic
loops will not belong to any integral surface and as such the LBC or the integrability
condition, defined in Appendix-A, will not be satisfied at all points along the loop.

4. Repeatability in Nonholonomically Redundant Space Manipulators

There are two different repeatability problems for a space manipulator system: (a) tile
direct problem of finding a closed path in the joint space of the manipulator such that
the end-effector traces a closed path, and (b) the inverse problem of finding a closed path
in the workspace that will result in a closed path in the joint space under pseudoinverse
control. The inverse problem can be solved by simply solving the direct problem when
the number of manipulator joints is equal to the dimension of the workspace, as in our
case. This is true because in such situations the pseudoinverse is identical to tile inverse

assuming that the manipulator is not at any singular configuration. In this section we
consider the direct repeatability problem of a planar space robot with two links mounted
on a space vehicle as shown in Fig.2. Since the manipulator has two links, the system will
exhibit nonholonomic redundancy in the absence of ordinary kinematic redundancy.

The Cartesian coordinates of the end-effector xv, yE of the manipulator have a func-

tional dependence of the form

XE = fl (Xo,Y 0o, 01, 0;1), YE = f2 (Xo, YO, 00, 01, 02) (27)

where xo and Yo are the coordinates of the center of mass of the space vehicle, 0o is the
orientation of the vehicle, and ol and 02 are the joint variables. The motion of the center of
mass of the space vehicle is governed by a holonomic constraint due to linear mzaonmlenI.uima
conservation. For zero initial linear momentum, this can be reduced to the form 11

Xo = f3 (oo, 0o, 02 ), Yo = f4 (oo, 81, o2) (28)

Since we are looking into the repeatability problem of a planar space robot, we consider

closed trajectories of the joint variables. If the orientation of the space vehicle trace a closed
curve as the joints move along a closed trajectory, it is clear from Eqs.(27) and (28) that all
the configuration variables including xo, yo, xE, and YE will move along closed trajectories.

This is not true in the general case.

12



When the joints move along closed trajectories and the system maintains zero angular
momentum, the change in the orientation of the space vehicle is expressed as a surface
integral using the generalized Stokes' Theorem on a manifold, as given by Eq.(23). The
domain D will be the 2-dimensional joint space of the manipulator and the differential
1-form on D will be the constraint due to the conservation of angular momentum, given as

, w=dOo = 0(1, 02) dO + 92(01, 02) d

d~l (2)d92(29)

where A, B, and C are functions of 01 and Aj and are defined in Appendix-B. The function
F defined in Eq.(26) is therefore equal to

F(O,,02) A (!= -L (30)

002 'ýA 001 ý

We now present a simple method to plan repeatable paths for the space manipulator.
All paths that will ensure repeatability will have to satisy the necessary condition for
repeatability, developed in section 3. Therefore, we first take a look at all points in the
01-02 space where the function F(01 , 02) in Eq.(30) is identically zero. The set of all such
points constitute a smooth curve, as seen in Fig.4.

We assume our closed path to have an elliptical shape. This path, as seen in Fig.5,
can be parameterized as follows:

01 = Oio + acos ocos2wt - bsinosin2wt

02 = 020 + asini cos2rt + bcos Osin2wt

where, a, and b are the major and minor axes of the ellipse, 4 is the angle of inclination
of the ellipse with the 01 axis, and 010 and 020 are the coordinates of the center of the
ellipse. The velocities of the joints of the manipulator can be easily obtained froun the
above equation as a function of time. Consequently, the rate of change of the orientation
of the space vehicle can be obtained from Eq.(29) as a function of time.

We start with an initial elliptical path which is characterized by the parameters olo,
02o, a, b, and 0. The initial choices of these parameters are quite arbitrary. We only make
sure that the elliptical path encompasses at least one point where the function F defined
by Eq.(30) is equal to zero. This condition can be easily satisfied by considering I'ig.4
which provides the set of all points where the function F vanishes.

Our goal is now to change the five parameters of the ellipse so that the surface integral
of the function P in F-{.(30) over the elliptical path is equal to zero. Of the five different
parameters a and b are not allowed to change independent of one another. This is because
we want to eliminate the trivial solution where the surface integral is zero because the area
of the closed path is equal to zero. One simple way to avoid this situation is to impose the
restriction that. the area of the ellipse is a constant. This is equiivalenit to the colistrailit

adb+ bda = 0 (32)
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We define a function V as follows

V = 2, C . F(9 , 02) ,A d 2  (33)

and solve the unconstrained minimization problem by implicitly assuming that , and b
are dependent. In Eq.(33) C is equal to the net change in the orientation of the space
vehicle as the joint variables move along closed paths. While there are many methods for
unconstrained minimization, we choose the simplest method of steepest descent 120]. Other

alternative methods that can be used are the conjugate direction method by Fletcher and
Reeves 141, and the variable metric method 1201 that offer improvement over the method
of steepest descent. In our case the method of steepest descent works well and therefore
we adopted it only for its simplicity.

The correct choice of the independent parameters G10, 02o, o, and a that provied us
with the steepest direction of descent of the function V are computed as

d0 o- = -(- d02o -C o, do L-C-, du = -( L(

In the above equation, the quantities (OC/Oilo), (c/0.02o), (0(/104), and (aC/Ba) are coimi-

puted by numerical partial differentiation. While computing the term (OC/Oa).it has to be
remembered that a change in a is accompanied by a change in b given by the constraint in

Eq.(32).
The optimization technique discussed above provides us with a systematic way to

reach the local minimum value of the function V. If this minimum value is zero, then we

have converged upon the desired path around which the space robot will exhibit pseudo-
holonomic behavior. In the general case, the method of steepest descent does not guarantee
the convergence of a function to its global minimum value. However, in our case the method
always converged to the global minimnum value of V = 0, because of the particular nature
of the function F in Eq.(30).

5. Repeatable Motion under Pseudoinverse Control

The repeatability problem in redundant manipulators under pseudoinverse control is
a search for closed trajectories of the end-effector that result in closed joint trajectories.
Since the pseudoinverse control is actually a form of nonholonomically constrained motion,
closed joint trajectories can be obtained only if the dependent joint variables move along
a closed path as the independent joint variables do. Our logical first step is therefore
to search for closed trajectories of the independent joint variables that result in closed

trajectories of the dependent joint variables.
To further our discussion, we consider the planar redundant manipulator in Fig. 1 with

unity link lengths. This example was considered in [71, 19], and [16]. The kinematic
relations of this manipulator are given in &F.(4) and its Jacobian is given by Eq.(5). The
nonholonomic constraint of the manipulator under pseudoinverse control is given by K1.(6),

which is not of the form given by Eq.(24). To reduce it to this form, we use the simple

transformation
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101,=9, V2=92-19, 03 =03-0 (34)

The transformed constraint equation

Osin(02 + 03) - sin ¢ 2 - sin4 03 d¢3 - snn 2 dgr + juin(02 +,0s) - sin ¢21 d€02 = 0 (35)

is then of the form as given by Eq.(24). Under the assumption that

sin 2 + sin 3 - sin(C2 + %s) 1 0 (36)

the change in the dependent variable plk, as the independent variables 02 and ¢P: move
along a closed path, can be shown to be

I/_1 do,=I- db2d0 3

8D J1J = sin €2 + sin 03 - Sin('2 + b3)j

using Stokes' Theorem f11. The function F defined by Eq.(26) is given as

[sin 02 + sin 3 1 - sin(432 i- 4+3)] (37)

and is not equal to zero anywhere in the 02-,03 plane. The necessary condition for repeata-
bility is therefore not satisfied. This means that when the condition in Eq.(36) holds good,

the redundant manipulator cannot exhibit repeatability. The condition in ED.(36) does

not hold good when we have any one of the three cases

(a) 02 = 0 4 Ol = 02

(b) 3 = 0 4fi 02 = 03

(c) €.2 + %3 = 0 * 03=01

Using Eq.(35), it is possible to show that the three cases above imply

(a) 4b2= 0 dVp. 2=0

(b) P3 = 0 d03 0

(c) 0,2 + •3= o -. d(32 + *j) 0==

Therefore, each of the three cases represent an integral surface. These results are identical
to that obtained by Shamir and Yomdin 1161 using the Lie Bracket Condition (LBC). We
have to agree that for the particular example considered, repeatability can be achieved
only if the LBC holds good, i.e. the LBC is a necessary condition for repeatability.

The LBC is not a necessary condition for repeatability in the general case. To illustrate
this concept we consider the same manipulator as in Fig. 1, but we redefine the configuration
variables. Once again we assume the link lengths to be unity for the sake of simplicity.
If the new configuration variables are O,, 02, and Os, as defined by Eq.(34), then the
kinematic relations of the manipulator are
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X = cOO 01 + COS 12 + COS 023

Y = sin '1 + sin 012 + Sin 0123 (38)

and the manipulator Jacobian is given by

j1= ( -Sinl101 -Sin0 2 -Sin1a23 -sin,-1in2 - sin-123 M,223 (39)
COS101 +CO6012 +COG?/0123 COB 01i 2 + C=01i2 3 (=sV0 1 23

where we used the compact notation 012 and 0123 to denote (01 + 02) and (01 + o2 +

03) respectively. We note that the Jacobian J# in the above equation is quite different
from the Jacobian Js in Eq.(5). Consequently, the pseudoinverse control for J0 would be
considerably different from that of J#.

The nonholonomic constraint of the manipulator under pseudoinverse control of JV is
found to be

sin 03' do, - [sin tk3 + sin(0 2 + 0')I d0b2 + [sin 0'2 + sin(0 2 + 03)] d0b3 = 0 (40)

Assuming sin 03s V 0, the change in the dependent variable 1, as the independent variables
0 and 0 move along closed paths, can be shown to be

do, =/ sin 3 cos2 +sin3cos(0 2 + 03) - sin 0 2 db 2 d4,3  (41)

JoD AD sin(412

The function F defined in Eq.(26) is therefore equal to

F(0, ) sincos + sin 03 co0(0 2 + tPs) - Sill (42)sin 03242

To plan repeatable paths for the redundant manipulator under pseudoinverse control,
the necessary condition for repeatability discussed in section 3 has to be satisfied. There-
fore, we take a look at a set of points where the function F(02, P:) vanishes. A set of these
points is given in Fig.6. We assume the closed path in the space of the independent joint
variables, 2 and 0, to have an elliptical shape, as shown in Fig.7. The path in 02 and
os is parameterized in a way similar to Eq.(31). We start with an initial choice of the
parameters 01o, 0so, a, b, and 0. The choice is quite arbitrary except for the fact that the
path should enclose at least one point where the function F defined by D-.(42) is equal
to zero. This condition can be satisfied by considering Fig.6. Our goal is now to change
the five parameters of the elliptical path so that the surface integral of the function F in
Eq.(42) over the path is equal to zero. We achieve our goal by adopting the optimization
technique outlined in section 4. The optimized path can then be likened to a "holonomic
loop" over which the joint angles of the redundant manipulator will exhibit holonomic
behavior globally.

Let us define the optimized closed path in the joint space to be Cj. Using forward
kinematics, as given by Eq.(38), we can obtain a closed path in the workspace Cw of the
redundant manipulator from C7. Under pseudoinverse control, Cw will map back to C.7
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in the joint space. This is true because (a) the mapping CJ 1-" Cw satisfies the kine-
matic relations of the manipulator, and (b) the closed path Cj satisfies the nonholonoinic

constraint due to pseudoinverse control.
Before we conclude this section we wish to make two comment:

1. It can be shown that the Lie Bracket Condition (LBC) in 1161 is not satisfied at every
point on Cj, yet the net change in the dependent joint variable ,P along C3 is zero.
Therefore, we can achieve repeatability in the absence of an integral surface.

2. Our second comment is in regards to the limit cycle behavior in redundant manipu-
lators. It was noted in [71 that under pseudoinverse control some manipulators drift
continuously while others exhibit limit cycle behavior. Our studies lead us to believe
that the drift in a redundant manipulator may be self-optimizing in the sense that
the drift may decrease with every cycle of end-effector motion. When such a situation
arises, the drift finally goes to zero and the manipulator reaches a limit cycle.

6. Simulations

6.1 A Nonholonomically Redundant Space Manipulator

We carried out several computer simulations. Here we present results of one particular
case. The kinematic and dynamic parameters of the planar space robot were chosen to be

Kinematic and Dynamic parameters
Mass Inertia Length
(kg) (kg-rn 2) (mn)

Vehicle 27.440 1.520 r = 0.20

Link-I 5.380 0.115 11 = 0.50
Link-2 2.640 0.028 12 = 0.35

The initial parameters of the elliptical path were arbitrarily chosen| as

a = 1.50000, b = 1.00000, 4 = 0.75000, 010 = 0.50000, 020 = 0.50000 (43)

where the units are in radians. For these set of values, the numerical value of the surface

integral C was found to be C = -0.162775. The convergence criterion was set at I C( <
1.0 x io-8. The values of the path parameters after convergence were

a = 1.31117, b = 1.14381, 46 = 0.79302, 010 = 0.34094, 92o = -0.07054 (44)

The two elliptical paths are shown in Fig.8. Ellipse I corresponds to the initial choice

of the path parameters given by Eq.(43) for which the value of C = -0.162775. Ellipse

II corresponds to the optimized values of the path parameters given by Eq.(44) and the
value of C for this path was C = -9.9636 x 10-9. 'The sinusokhdi curve in Fig.4 is inset in
Fig.8. This curve passes through both paths I and II and therefore these paths satisfy the

necessary condition discussed in section 3.
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Figures 9 and 10 depict the motion of the end-effector of the space robot for 20 cycles

for the elliptical paths I and II respectively. The end-effector configuration is seen to drift
in Fig.9 but has negligible drift for the closed path in Fig.10. The magnitude of the drift
was computed to be approximately 76.96 mm/cycle in the case of path I whereas it was

only 0.87 mm/cycle for path II.

6.2 An Ordinarily Redundant Terrestrial Manipulator

We considered the simple case of a planar three link manipulator with one degree
of redundancy, as shown in Fig.1. The kinematic relations of the manipulator and its
Jacobian are given by Eqs.(38) and (39). We assumed the links of the manipulator to have
equal lengths of 0.5 metres.

The initial parameters of the elliptical path was arbitrarily chosen as

a = 1.00000, b = 1.00000, 0 = 0.00000, 020 = 0.75000, ',30 = 1.50000 (45)

where the units are in radians. For these set of values, the numerical value of the surflice
integral C was found to be C = 1.9838625. The convergence criterion was set at C I -

1.0 x 10-6. The values of the path parameters after convergence were

a = 1.03337, b = 0.96769, =0.00232, 0k-o = 0.51512, ' -30 = 1.42478 (46)

The two elliptical paths are shown in Fig.11. Ellipse I corresponds to the initial choice
of the path parameters given by EA.(45) for which the value of C = 1.9838625. Ellipse I1

corresponds to the optimized values of the path parameters given by Eq.(46) and the value
of C for this path was C = 9.9431 x i0o-. The sinusoidal curve in Fig.6 is inset in Fig. 11. This
curve passes through both paths I and II and therefore these paths satisfy the necessary
condition discussed in section 3.

Path II in Fig.11 is the optimized path in the 0P2-03 plane of the manipulator that
results in closed loop motion of the dependent joint variable 'pl. For an initial value of

,p = 0.0, the closed end-effector trajectory Cw that is obtained from these closed joint
trajectories Cj is shown in Fig.12. Figure 12 also shows the link configuration of the
manipulator at six different points along the trajectory. The joint trajectories obtained
through pseudoinverse control of the closed end-effector trajectory in Fig.12 are shown in
Fig.13. The joint trajectories in Fig.13 pertain to 5 cycles of end-effector motion. The
numerical simulation was continued for more than 100 cycles and the joints were seen to
have exceptional repeatability. This conforms to our discussion in section 5.

We wish to make two comments at this juncture:

1. The Lie Bracket Condition (LBC) in 1161 is essentially a test for integrability of the

distribution spanned by the column vectors of the Jacobian pseudoinverse. Though
the LBC can be verified from the Jacobian transpose instead of the pseudoinverse (91,
[141, it may still involve a significant amount of symbolic computation. An easier way
out is to test the integrability of the constraint imposed by the pseudoinverse control.
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We can use Eqs.(7) and (8) to test the integrability of the pseudoinverse constraint
In Eq.(40). For the joint trajectories in Fig. 13 it can be shown that the condition for
integrability is not satisfied at all points along the path, i.e. F(02 , ,/) in &1.(42) is not
zero at all points along the path. Therefore repeatability is achieved in the absence of
integrability. This refutes the LBC in 1161.

2. Since the end-effector trajectory is generated from the joint trajectories and since
the initial configuration of the dependent joint variable, p in our case, is completely
arbitrary, any rotation of the end-effector trajectory in Fig.12 about the z-axis will also
produce repeatable joint motion. Clearly, there are infinite end-effector trajectories
that produce repeatable joint motion.

7. Conclusion

In this paper we promoted the concept that integrability is not a necessary condition
for repeatability in nonholonomic systems. This allows ms to plan repeatable trajectories
for free-flying space manipulators with zero initial momentum whose constraint (de to the
conservation of angular momentum is not integrable. This is important because it allows
a space manipulator to perform repeated tasks in space without any drift in its configura-
tion variables. Fbr terrestrial manipulators under pseudoinverse control the nonholonomic
constraint is imposed by the control law. We showed that under pseudoinverse control,
repeatability of the joint variables can be achieved in the absence of any integral surface
and by virtue of the presence of "holonon-ic loops". These loops, when they exist, allow
a nonholonomic system to exhibit repeatability in its configuration variables. In this pa-
per we presented a simple optimization technique for planning repeatable trajectories for
both nonholonomically redundant space manipulators and ordinarily redundant terrestrial

manipulators.
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APPENDIX-A

The necessary and sufficient condition that the differential constraint in n variables

vIdXz +t- 2 dX2 + I-vdxn =0

is integrable, is that the set of equations

49V,. -o,, OV, ) 0
O"a aOs,,)=°(A,sv= 1, 2,. .. ,n)

are satisfied simultaneously for all different combinations of A, i, and 1' 151.

APPENDIX-B

The terms A, B, and C in Eq.(29) are defined as follows

!L It + r1mo(n2 -+- m2) + ! ++ 2(MO + MOS M +-(mom+) + L"2 + 4morn2) + - 2 (nal + n1 2)1

4M 44M'!

1 11 1

-A- -jo n . ?I.2 a~rLlcohI Ol -I -j?&2.tI(J -I ( .5Saj)LaLl.co- 0.• i •,ylIOua2rl'cos(OI I 0.•)

Ia
B ] "" '2"- -(morn 1 "+ mlm 2 +r mom 2 ) +-i- 2n1 o--m)--•m~l--2arluO

+ jm 2 (mo + 0.5m0L1L2cos0 2 + •-Lmom 2 rL2cos(01 + 02)

C 1 + !M'(MO + Mo1) + I -fton211l2co3O02 + 1 mom2r0cos(Ol + 0•)

4M 2  2M T7 nM_ rco(

where, m0, mi, and M2 are the masses of the space vehicle and the two links of the ma-
nipulator, Io, I,, and 12 are the moment of inertias of the space vehicle and the two links
about their center of masses, r is the distance of the first joint from the center of mass of
the vehicle, 11 and L2 are the lengths of the two links, M -= mo+ in, + m2, and It = Io + 11 + 12.
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Figure 1. A planar three link redundant manipulator.
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y (XE, YE)
(XE9YE) end-effector

link "2

link- I

Space Vehicle

(xo, Yo) = center of mass (C.M.) of space vehicle

(XE, YE) = coordinates of the end-effector

>x

Figure 2. A two link planar space manipulator mounted on a space vehicle.
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Figure 3. Nonrepeatable joint motion of the three link redundant manipulator under

pseudoinverse control of its extended Jacobian.
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Figure 4. The locus of points in the 01-02 plane of the planar space robot where F(0 1,0.) = 0.
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02

a = semi-major axis of ellipse
b = semi-minor axis of ellipse

T12

(r112 ') = (a cos t, b sin t)

)P01

Figure 5. Parametric representation of the elliptical path in the joint space of the space
robot. P Is the center of the ellipse, and , is the angle between the major axis of tlhc ellipwe

and a,.
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Figure 6. The locus of points in a certain region of the 1&2-03 plane of the three link

redundant manipulator where F(02,03') = 0.
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'V3

a = semi-major axis of ellipse
b = semi-minor axis of ellipse

(11, ,2) = (a cos t, b sin t)

W'2

Figure 7. Parametric representation of the elliptical path in the space of the independent
joint variables of the redundant manipulator. P is the center of the ellipse whos; major
axis subtends an angle 4, with *2.
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Figure 8. Elliptical paths in the joint, space of thle planar" space robot. Path I is thle initially

chosen path and Path 11 is the optimize~d path.
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Figure 9. End-effector drift in 20 cycles for Path I in the joint space of the space robot.
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Figure 10. Repeatable end-effector motion for Path II in the joint space of the space roboL.
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Figure 11. Elliptical paths in the space of the independent joint variables of the three link

redundant robot. Path I is the initially chosen path and Path II is the optimized path.
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Figunre 12. The closw] path in tile figure depicts an end-effecLtor trajectory that will 1l'ducIe

repeatable joint motion under picjudoinverse coutrol. The figure also shows thu cotligima-

tion of the redundant manipulator at six different points along the trajectory.
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Figure 13. The repeatable joint trajectories of the three link redundant manipulator gen-

erated through pseudoinverse control of the end-effector trajectory in Figure 12.
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